Hilbert's Fourteenth Problem and algebraic extensions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Resolution to Hilberts First Problem

The continuum hypothesis (CH) is one of and if not the most important open problems in set theory, one that is important for both mathematical and philosophical reasons. The general problem is determining whether there is an infinite set of real numbers that cannot be put into one-to-one correspondence with the natural numbers or be put into one-to-one correspondence with the real numbers respe...

متن کامل

Counterexamples to the Fourteenth Problem of Hilbert

Let K be a field, K[X] = K[X1, . . . , Xn] the polynomial ring in n variables over K for some n ∈ N, and K(X) the field of fractions of K[X]. Assume that L is a subfield of K(X) containing K. Then, the Fourteenth Problem of Hilbert asks whether the Ksubalgebra L ∩K[X] of K[X] is finitely generated. Zariski [17] showed in 1954 that the answer to this problem is affirmative if the transcendence d...

متن کامل

Three Notes on Controlled Hyper-Algebraic and Dhyper-Algebraic Extensions

(1) Regular control does not increase the generating power of 1restricted [d]K-iteration grammars provided that K ⊇ SYMBOL, and K is closed under isomorphism and under union with SYMBOL-languages. (2) Let Γ be a prequasoid closed under the regular operations. If K is a prequasoid [pseudoid], then H(Γ) ⊆ H(Γ,K) [η(Γ) ⊆ η(Γ,K)]. In particular we have H(Γ) ⊆ (Γ)ETOL and η(Γ) ⊆ (Γ)EDTOL. (3) Under ...

متن کامل

Algebraic Extensions of Normed Algebras

Disclaimer: This dissertation does not contain plagiarised material; except where otherwise stated all theorems are the author's. Acknowledgement: Many thanks to Joel Feinstein for guidance with the literature, useful suggestions and comments on this work.

متن کامل

Algebraic Extensions for Symbolic Summation

The main result of this thesis is an effective method to extend Karr’s symbolic summation framework to algebraic extensions. These arise, for example, when working with expressions involving (−1)n. An implementation of this method, including a modernised version of Karr’s algorithm is also presented. Karr’s algorithm is the summation analogue of the Risch algorithm for indefinite integration. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2006.10.008